If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+3x-18000=0
a = 6; b = 3; c = -18000;
Δ = b2-4ac
Δ = 32-4·6·(-18000)
Δ = 432009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432009}=\sqrt{9*48001}=\sqrt{9}*\sqrt{48001}=3\sqrt{48001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{48001}}{2*6}=\frac{-3-3\sqrt{48001}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{48001}}{2*6}=\frac{-3+3\sqrt{48001}}{12} $
| -(x-5)=-5x-19 | | 42+x+36.08=180 | | 83.2+x+74.1=180 | | 97+15+x=180 | | 122+32+x=180 | | 2r-7+r=1+4r | | 74-2m=-5(m-4) | | 5y9=8y | | 4x+23=6x-4 | | 1.500=(800-100x)x | | d/4+17=-3 | | 2x-3x=27x | | 17n+8=104+5n | | 11y+3-6y+28=96 | | 8(x-1)+6(x+2)=90 | | (7x+11)+(2+8x)=90 | | -3x-25=-100 | | 138+3(5x-1)=180 | | 8r+16=96 | | (8x+17)+67=180 | | 2(2x+7)+2(3x-7)=180 | | 5.2=2x-1.2 | | 8(x-1)+6(x+2)=180 | | 39+(5x+11)=90 | | 2(x+5)+122=180 | | 4.6x+2.3=24 | | 2(x-26)+(3x+2)=180 | | 7x+(3x-10)=180 | | 5+1=5-5(x+4)-2x | | 3-6(x+7)=5+4 | | 3-6l=-33 | | -30=2(2x+7) |